培訓內(nèi)容:
課程介紹
1.需求理解
Hadoop 設計之初的目標就定位于高可靠性、高可拓展性、高容錯性和高效性,正是這些設計上與生俱來的優(yōu)點,才使得Hadoop 一出現(xiàn)就受到眾多大公司的青睞,同時也引起了研究界的普遍關注。
對電信運營商而言,用戶上網(wǎng)日志包含了大量用戶個性化需求、喜好信息,對其進行分析和挖掘,能更好地了解客戶需求。傳統(tǒng)經(jīng)營分析系統(tǒng)小型機加關系型數(shù)據(jù)庫的架構(gòu)無法滿足對海量非結(jié)構(gòu)化數(shù)據(jù)的處理需求,搭建基于X86的Hadoop 平臺,引入大數(shù)據(jù)處理技術的方式,實現(xiàn)高效率、低成本、易擴展的經(jīng)營分析系統(tǒng)混搭架構(gòu)成為電信運營商最為傾向的選擇。本課程將全面介紹Hadoop平臺開發(fā)和運維的各項技術,對學員使用該項技術具有很高的應用價值。
2.培訓課程架構(gòu)與設計思路
(1)培訓架構(gòu):
本課程分為三個主要部分:
第一部分:重點講述大數(shù)據(jù)技術在的應用,使學員對大數(shù)據(jù)技術的廣泛應用有清晰的認識,在這環(huán)節(jié)當中會重點介紹Hadoop技術在整個大數(shù)據(jù)技術應用中的重要地位和應用情況。
第二部分:具體對hadoop技術進行模塊化分拆,從大數(shù)據(jù)文件存儲系統(tǒng)技術和分布式文件系統(tǒng)平臺及其應用談起,介紹Hadoop技術各主要應用工具和方法,以及在運維維護當中的主流做法,使學員全面了解和掌握Hadoop技術的精華。
第三部分:重點剖析大數(shù)據(jù)的應用案例,使學員在案例當中對該項技術有更深入的感觀印象
(2)設計思路:
本課程采用模塊化教學方法,以案例分析為主線,由淺入深、循序漸進、由理論到實踐操作進行設計。
(3)與企業(yè)的貼合點:
本課程結(jié)合企業(yè)轉(zhuǎn)型發(fā)展及大數(shù)據(jù)發(fā)展戰(zhàn)略,圍繞企業(yè)大數(shù)據(jù)業(yè)務及行業(yè)應用市場拓展發(fā)展目標,重點講授Hadoop的應用技術,提升企業(yè)IT技術人員的開發(fā)和運維能力,有很強的貼合度。
培訓目標
掌握大數(shù)據(jù)處理平臺(Hadoop、Spark、Storm)技術架構(gòu)、以及平臺的安裝部署、運維配置、應用開發(fā);掌握主流大數(shù)據(jù)Hadoop平臺和Spark實時處理平臺的技術架構(gòu)和實際應用;利用Hadoop+Spark對行業(yè)大數(shù)據(jù)進行存儲管理和分析挖掘的技術應用;講解Hadoop生態(tài)系統(tǒng)組件,包括Storm,HDFS,MapReduce,HIVE,HBase,Spark,GraphX,MLib,Shark, ElasticSearch等大數(shù)據(jù)存儲管理、分布式數(shù)據(jù)庫、大型數(shù)據(jù)倉庫、大數(shù)據(jù)查詢與搜索、大數(shù)據(jù)分析挖掘與分布式處理技術
培訓大綱
第一部分:移動互聯(lián)網(wǎng)、大數(shù)據(jù)、云計算相關技術介紹
第二部分:大數(shù)據(jù)的挑戰(zhàn)和發(fā)展方向
第三部分:大數(shù)據(jù)文件存儲系統(tǒng)技術和分布式文件系統(tǒng)平臺及其應用
第四部分:Hadoop文件系統(tǒng)HDFS最佳實戰(zhàn)
第五部分:Hadoop運維管理與性能調(diào)優(yōu)
第六部分:NOSQL數(shù)據(jù)庫Hbase與Redis
第七部分:類SQL語句工具——Hive
第八部分:數(shù)據(jù)挖掘SPARK建模基礎介紹
第九部分:Kafka基礎介紹
第十部分:大數(shù)據(jù)典型應用與開發(fā)案例分析:互聯(lián)網(wǎng)數(shù)據(jù)運營
第十一部分:當前數(shù)據(jù)中心的改造和轉(zhuǎn)換分析-以國內(nèi)外運營商、互聯(lián)網(wǎng)公司為例
第十二部分:課程總結(jié)與問題答疑
評估培訓
詳細培訓內(nèi)容介紹
模塊一
移動互聯(lián)網(wǎng)、大數(shù)據(jù)、云計算相關技術介紹
1、數(shù)據(jù)中心與云計算技術應用
2、智慧城市與云計算技術應用
3、移動互聯(lián)網(wǎng)、大數(shù)據(jù)與云計算關聯(lián)技術
4、移動云計算的生態(tài)系統(tǒng)及產(chǎn)業(yè)鏈
5、大數(shù)據(jù)技術在運營商、金融業(yè)、銀行業(yè)、電子商務行業(yè)、零售業(yè)、制造業(yè)、政務信息化、互聯(lián)網(wǎng)、教育信息化等行業(yè)中的應用實踐
6、國內(nèi)外主流的大數(shù)據(jù)解決方案介紹
7、當前大數(shù)據(jù)解決方案與傳統(tǒng)數(shù)據(jù)庫方案的剖析比較
8、Cloudera Hadoop 大數(shù)據(jù)平臺方案剖析
開源的大數(shù)據(jù)生態(tài)系統(tǒng)平臺剖析
模塊二
大數(shù)據(jù)的挑戰(zhàn)和發(fā)展方向
1、大數(shù)據(jù)時代的挑戰(zhàn)
戰(zhàn)略決策能力
技術開發(fā)和數(shù)據(jù)處理能力
組織和運營能力
2、大數(shù)據(jù)時代的發(fā)展方向
云計算是基礎設施架構(gòu)
大數(shù)據(jù)是靈魂資產(chǎn)
分析、挖掘是手段
發(fā)現(xiàn)和預測是最終目標
3、大數(shù)據(jù)挖掘在各行業(yè)應用情況
電信行業(yè)應用及案例分析
互聯(lián)網(wǎng)行業(yè)應用及案例分析
金融行業(yè)應用及案例研究
銷售行業(yè)應用案例分析
模塊三
大數(shù)據(jù)文件存儲系統(tǒng)技術和分布式文件系統(tǒng)平臺及其應用
1、Hadoop的發(fā)展歷程
Hadoop大數(shù)據(jù)平臺架構(gòu)
基于Hadoop平臺的PB級大數(shù)據(jù)存儲管理與分析處理的工作原理與機制
Hadoop 的核心組件剖析
2、分布式文件系統(tǒng)HDFS
概述、功能、作用、優(yōu)勢
應用范疇、應用現(xiàn)狀
發(fā)展趨勢
3、分布式文件系統(tǒng)HDFS架構(gòu)及原理
核心關鍵技術
設計精髓
基本工作原理
系統(tǒng)架構(gòu)
文件存儲模式
工作機制
存儲擴容與吞吐性能擴展
4、分布式文件系統(tǒng)HDFS操作
SHELL命令操作
I/O流式操作
文件數(shù)據(jù)讀取、寫入、追加、刪除
文件狀態(tài)查詢
數(shù)據(jù)塊分布機制
數(shù)據(jù)同步與一致性
元數(shù)據(jù)管理技術
主節(jié)點與從節(jié)點工作機制
大數(shù)據(jù)負載均衡技術
HDFS大數(shù)據(jù)存儲集群管理技術
5、Hadoop生態(tài)系統(tǒng)組件
Storm
HDFS
MapReduce
HIVE
HBase
Spark
GraphX
MLib
Shark
模塊四
Hadoop文件系統(tǒng)HDFS最佳實戰(zhàn)
1、HDFS的設計
2、HDFS的概念
數(shù)據(jù)塊
namenode和datanode
聯(lián)邦HDFS
HDFS的高可用性
3、命令行接口
4、Hadoop文件系統(tǒng)
5、Java接口
從Hadoop URL讀取數(shù)據(jù)
通過FileSystem API讀取數(shù)據(jù)
寫入數(shù)據(jù)
目錄
查詢文件系統(tǒng)
刪除數(shù)據(jù)
6、數(shù)據(jù)流
剖析文件讀取
剖析文件寫入
一致模型
7、通過Flume和Sqoop導入數(shù)據(jù)
8、通過distcp并行復制
9、Hadoop存檔
使用Hadoop存檔工具
不足
模塊五
Hadoop運維管理與性能調(diào)優(yōu)
1、第二代大數(shù)據(jù)處理框架
Yarn的工作原理及
DAG并行執(zhí)行機制
Yarn大數(shù)據(jù)分析處理案例分析
Yarn 框架并行應用程序?qū)嵺`
2、集群配置管理
Hadoop集群配置
Hadoop性能調(diào)優(yōu)與參數(shù)配置
Hadoop機架感知策略與配置
Hadoop壓縮機制
Hadoop任務負載均衡
Hadoop 集群維護
Hadoop監(jiān)控管理
3、HDFS的靜態(tài)調(diào)優(yōu)技巧
HDFS 的高吞吐量I/O性能調(diào)優(yōu)技巧
MapReduce/Yarn的并行處理性能調(diào)優(yōu)技巧
Hadoop集群的運行故障剖析,以及解決方案
基于Hadoop大數(shù)據(jù)應用程序的性能瓶頸剖析與提
Hadoop 大數(shù)據(jù)運維監(jiān)控管理系統(tǒng) HUE 平臺的安裝部署與應用配置
Hadoop運維管理監(jiān)控系統(tǒng)Ambari平臺的安裝部配置
Hadoop 集群運維系統(tǒng) Ganglia, Nagios的安裝部署與應用配置
模塊六
NOSQL數(shù)據(jù)庫Hbase與Redis
1、NOSQL基礎
CAP理論
Base與ACID
NOSQL數(shù)據(jù)庫存儲類型
鍵值存儲
列存儲
文檔存儲
圖形存儲
2、HBase分布式數(shù)據(jù)基礎
3、安裝Hbase
4、Hbase應用
HBase的邏輯數(shù)據(jù)模型,HBase的表、行、列族、列、單元格、版本、row key排序
HBase的物理模型,命名空間(表空間)、表模式(Schema)的設計法則
HBase 主節(jié)點HMaster的工作原理,HMaster的高可用配置,以及性能調(diào)優(yōu)
HBase 從節(jié)點RegionServer(分區(qū)服務節(jié)點)的工作原理,表分區(qū)及存儲I/O高并發(fā)配置,以及性能調(diào)優(yōu)
HBase的存儲引擎工作原理,以及HBase表數(shù)據(jù)的鍵值存儲結(jié)構(gòu),以及HFile存儲結(jié)構(gòu)剖析
HBase表設計與數(shù)據(jù)操作以及數(shù)據(jù)庫管理操作
HBase集群的安裝部署、參數(shù)配置和性能優(yōu)化
5、HBase分布式數(shù)據(jù)庫簡介、發(fā)展歷程、應用場景、工作原理、以及應用優(yōu)勢與不足之處
HBase分布式數(shù)據(jù)庫集群的主從式平臺架構(gòu)和關鍵技術剖析
HBase偽分布式和物理集群分布式的控制與運行配置
HBase從節(jié)點RegionServer(分區(qū)服務節(jié)點)的工作原理,表分區(qū)及存儲I/O高并發(fā)配置,以及性能調(diào)優(yōu)
HBase的存儲引擎工作原理,以及HBase表數(shù)據(jù)的鍵值存儲結(jié)構(gòu),以及HFile存儲結(jié)構(gòu)剖析
HBase表設計與數(shù)據(jù)操作以及數(shù)據(jù)庫管理操作
HBase集群的安裝部署、參數(shù)配置和性能優(yōu)化
ZooKeeper分布式協(xié)調(diào)服務系統(tǒng)的工作原理、平臺架構(gòu)、集群部署應用實戰(zhàn)
ZooKeeper集群的原理架構(gòu),以及應用配置
6、Redis內(nèi)存數(shù)據(jù)庫介紹,以及業(yè)界應用案例
Redis內(nèi)存數(shù)據(jù)庫集群架構(gòu)以及核心技術剖析
Redis 集群的安裝部署與應用開發(fā)實戰(zhàn)
模塊七
類SQL語句工具——Hive
1、安裝Hive
2、示例
3、運行Hive
配置Hive
Hive服務
Metastore
4、Hive與傳統(tǒng)數(shù)據(jù)庫相比
讀時模式vs.寫時模式
更新、事務和索引
5、HiveQL
數(shù)據(jù)類型
操作與函數(shù)
6、表
托管表和外部表
分區(qū)和桶
存儲格式
導入數(shù)據(jù)
表的修改
表的丟棄
7、查詢數(shù)據(jù)
排序和聚集
MapReduce腳本
連接
子查詢
視圖
8、用戶定義函數(shù)
寫UDF
寫UDAF
模塊八
數(shù)據(jù)挖掘SPARK建;A介紹
1、Spark簡介
Spark是什么
Spark生態(tài)系統(tǒng)BDAS
2、Spark架構(gòu)
Spark分布式架構(gòu)與單機多核架構(gòu)的異同
3、Spark集群的安裝與部署
Spark的安裝與部署
Spark集群初試
4、Spark硬件配置
Spark硬件
Spark硬件配置流程
模塊九
Kafka基礎介紹
1、Kafka介紹
2、kafka體系結(jié)構(gòu)
3、kafka設計理念簡介
4、kafka通信協(xié)議
5、kafka的偽分布安裝、集群安裝
6、kafka的shell操作、java操作
7、kafka設計理念*
8、kafka producer和consumer開發(fā)
9、Kafka分布式消息訂閱系統(tǒng)的應用介紹、平臺架構(gòu)、集群部署與配置應用實戰(zhàn)
10、Flume-NG數(shù)據(jù)采集系統(tǒng)的數(shù)據(jù)流模型、平臺架構(gòu)、集群部署與配置應用實戰(zhàn)
11、Hadoop與DBMS之間數(shù)據(jù)交互工具Sqoop的應用實踐,
12、Sqoop導入導出數(shù)據(jù)以及Sqoop集群部署與配置
13、Kettle 集群的平臺架構(gòu)、核心技術、部署配置和應用實戰(zhàn)
14、利用Sqoop實現(xiàn) MySQL 與 Hadoop 集群之間
模塊十
大數(shù)據(jù)典型應用與開發(fā)案例分析:互聯(lián)網(wǎng)數(shù)據(jù)運營
1、案例1:貴州數(shù)據(jù)交易中心
交易所交易形式:電子交易
交易所服務:大數(shù)據(jù)交易、大數(shù)據(jù)清洗建模分析、大數(shù)據(jù)定向采購、大數(shù)據(jù)平臺技術開發(fā)
大數(shù)據(jù)交易安全性探討分析
數(shù)據(jù)交易中心商業(yè)模式探討分析
2、案例2:大數(shù)據(jù)應用案例:公共交通線路的智能規(guī)劃
UrbanInsights:為公交公司提供基于訂閱訪問的大數(shù)據(jù)工具以及大數(shù)據(jù)咨詢服務
Urban Insights數(shù)據(jù)源、數(shù)據(jù)收集、數(shù)據(jù)倉庫、數(shù)據(jù)分析——設計運營線路
Urban Insights通過互聯(lián)網(wǎng)數(shù)據(jù)的運營
3、討論:浙江移動大數(shù)據(jù)應用與開發(fā)方向
模塊十一
當前數(shù)據(jù)中心的改造和轉(zhuǎn)換分析-以國內(nèi)外運營商、互聯(lián)網(wǎng)公司為例
1、流商業(yè)大數(shù)據(jù)解決方案比較
2、主流開源云計算系統(tǒng)比較
3、國內(nèi)外代表性大數(shù)據(jù)平臺比較
4、各廠商最新的大數(shù)據(jù)產(chǎn)品介紹
5、案例分析
Facebook的SNS平臺應用
Google的搜索引擎應用
Rackspace的日志處理
Verizon成立精準市場營銷部
TelefonicaDynamicInsights推出的名為“智慧足跡”的商業(yè)服務
中國聯(lián)通的“移動通信用戶上網(wǎng)記錄集中查詢與分析支撐系統(tǒng)”
模塊十二課程總結(jié)與問題答疑
師資介紹
張老師:阿里大數(shù)據(jù)高級專家,國內(nèi)資深的Spark、Hadoop技術專家、虛擬化專家,對HDFS、MapReduce、HBase、Hive、Mahout、Storm、spark和openTSDB等Hadoop生態(tài)系統(tǒng)中的技術進行了多年的深入的研究,更主要的是這些技術在大量的實際項目中得到廣泛的應用,因此在Hadoop開發(fā)和運維方面積累了豐富的項目實施經(jīng)驗。近年主要典型的項目有:某電信集團網(wǎng)絡優(yōu)化、中國移動某省移動公司請賬單系統(tǒng)和某省移動詳單實時查詢系統(tǒng)、中國銀聯(lián)大數(shù)據(jù)數(shù)據(jù)票據(jù)詳單平臺、某大型銀行大數(shù)據(jù)記錄系統(tǒng)、某大型通信運營商全國用戶上網(wǎng)記錄、某省交通部門違章系統(tǒng)、某區(qū)域醫(yī)療大數(shù)據(jù)應用項目、互聯(lián)網(wǎng)公共數(shù)據(jù)大云(DAAS)和構(gòu)建游戲云(Web Game Daas)平臺項目等。